
Nature of Magnetic Materials (1)

- Accurate quantitative analysis requires quantum mechanics
- Simple atomic model: orbiting electrons are small current loops
- The magnetic moment is caused by:
 - 1. electron orbit (electron orbiting the nucleus)
 - 2. electron spin (electron spinning about its axis)
 - 3. nuclear spin (nucleus spinning about its axis weak effect)

- An external magnetic field $\vec{B}_{\rm ext}$ puts a torque on the atomic loops causing the dipoles to align with or against the external field
- Broad classification of the magnetic properties of materials:
 - 1. <u>diamagnetic</u>, small negative χ_m
 - 2. paramagnetic, small positive χ_m
 - 3. <u>ferromagnetic</u>, large positive χ_m

Nature of Magnetic Materials (2)

• Diamagnetic Materials

- 1. When $\vec{B}_{\rm ext} = 0$ the net magnetic moment is zero (the spin and orbit components cancel)
- 2. When $\vec{B}_{\rm ext} \neq 0$ there is a small net magnetic moment induced in a direction opposite to $\vec{B}_{\rm ext}$ (negative χ_m , $\mu_r < 1$ but close to 1)
- 3. When $\vec{B}_{\rm ext}$ is removed no magnetization remains

• Paramagnetic Materials

- 1. Spin and orbit components do not completely cancel, but the net \vec{m} from atom to atom is randomized due to thermal agitation (thus paramagnetism is temperature dependent)
- 2. When $\vec{B}_{\rm ext} \neq 0$ the dipoles align themselves with $\vec{B}_{\rm ext}$ (positive χ_m , $\mu_r > 1$ but close to 1)
- 3. When $\vec{B}_{\rm ext}$ is removed almost no magnetization remains

Nature of Magnetic Materials (3)

• Ferromagnetic Materials

- 1. Large dipole moments are due to electron spin
- 2. Groups of adjacent atoms (domains) have dipole moments similarly aligned.
- 3. The alignment of the domains can be random (therefore no magnetization) until $\vec{B}_{\rm ext}$ is applied
- 4. When $\vec{B}_{\rm ext}$ is removed a net magnetization remains

• Other categories:

<u>Ferrimagnetism</u>: Similar to ferromagnetism, except that the domains are anti-parallel and don't quite cancel

Anti-ferrimagnetism: The domains are anti-parallel and completely cancel

Summary of Magnetic Materials

Type of Magnetism	Applied External Magnetic Field	External Magnetic Field Removed	
Diamagnetism	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		No \vec{M} remains
Paramagnetism	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$ $\uparrow\vec{B}_{\rm ext}$		No \vec{M} remains
Ferromagnetism	$\vec{P}_{\rm ext}$	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	Large \vec{M} remains
Ferrimagnetism	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow $ $\uparrow \vec{B}_{\rm ext}$	^ * ^ * ^ * ^ * ^ * ^ * ^ * ^ * ^ *	Small \vec{M} remains
Anti-ferrimagnetism	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \vec{B}_{\rm ext}$	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	No \vec{M} remains